Ticagrelor Attenuates Apoptosis of Lung and Myocardial Cells Induced by Abdominal Aorta Ischemia/Reperfusion.
نویسندگان
چکیده
AIM This study aimed to analyze the effect of ticagrelor pretreatment on the prevention of lung and heart injury induced by abdominal aorta ischemia and reperfusion (I/R) and also to determine the effective dose. MATERIALS AND METHODS Thirty-five male Sprague-Dawley rats weighing 350-400 g were randomized into five groups. The animals received ticagrelor at doses of 7.5 mg/kg, 15 mg/kg and 25 mg/kg or normal saline 0.1 ml/kg orally via gastric gavage before the ischemic period. In the control and study groups, I/R injury was induced by clamping the aorta infrarenally for 2 hs, followed by 4 h of reperfusion. After sacrifice, hearts and lungs of the animals were extracted for both histopathological and biochemical analysis. RESULTS There was a significant difference between the animals that received 7.5 mg/kg and 25 mg/kg and 15 mg/kg and 25 mg/kg dose of ticagrelor regarding tissue malondealdehyde (MDA), and glutathione reductase levels in both lung and heart Ticagrelor treatment at 25 mg/kg led to significant cardiac remodeling activity and normal lung architecture against I/R induced injury. The number of TdT-mediated dUTP nick-end labeling (TUNEL)-positive cells in alveolar epithelium and myocytes were increased in the sections from saline (I/R) group rats, and decreased following 25 mg/kg ticagrelor treatment. CONCLUSION Ticagrelor dose-dependently inhibits platelet aggregation, increases cyclooxygenase-2 and also inhibits cellular uptake of adenosine all resulting in attenuation of I/R injury. Ticagrelor at 25 mg/kg was determined as the dose effective against I/R-induced injury in lung and heart in Sprague-Dawley rats in the present study.
منابع مشابه
Effect of ground black seeds (Nigella sativa L.) on renal tubular cell apoptosis induced by ischemia/reperfusion injury in the rats
Objective(s): The aim of this study was to evaluate the effects of ground black seeds on renal tubular cell apoptosis following ischemia/reperfusion (I/R) injury in rats. Materials and Methods: Forty male Wistar rats were randomly allocated into 5 equal groups including Sham, I/R model and three I/R+ black seeds (5, 10 and 20%)-treated groups. I/R groups’ kidneys were subjected to 60 min of isc...
متن کاملInhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats
Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...
متن کاملLung injury after aortic occlusion-reperfusion in rats: the role of gadolinium chloride.
Aortic ischemia-reperfusion (AIR) induced lung injury has already been documented. Kupffer cell blockage (KCB) with gadolinium chloride (GdCl3) has also been shown to attenuate remote organ damage caused by ischemia reperfusion. The present study was designed to examine the effect of GdCl3 in lung ischemia-reperfusion injury induced by aortic occlusion. Thirty-two rats were randomly allocated t...
متن کاملPioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells
Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...
متن کاملAldehyde dehydrogenase 2 overexpression inhibits neuronal apoptosis after spinal cord ischemia/reperfusion injury
Aldehyde dehydrogenase 2 (ALDH2) is an important factor in inhibiting oxidative stress and has been shown to protect against renal ischemia/reperfusion injury. Therefore, we hypothesized that ALDH2 could reduce spinal cord ischemia/reperfusion injury. Spinal cord ischemia/reperfusion injury was induced in rats using the modified Zivin's method of clamping the abdominal aorta. After successful m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- In vivo
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2016